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O F  T H E  S I D E  W A L L  O F  A C H A N N E L  

V. I. Bukreev and N. P. Turanov UDC 532.59 

A prismatic channel with a rectangular cross section and a horizontal bot tom of length L and width B 
is filled with water at rest to depth h. At moment t = 0, one of the side walls begins to be displaced by a 
specified law. The forces acting on the wall and the wave motion in the channel are the subject of interest. 
This paper presents the results of experimental study of waves, focusing exclusively on gravity waves. 

If we confine ourselves to consideration of plane waves and the time interval before the arrival of reflected 
waves at a given point in space and ignore the effect of air, surface tension, viscosity, and compressibility 
of water, the undisturbed state of a dynamic system can be characterized by three parameters: depth h, 
acceleration of gravity g, and water density p. The kinematic properties of the waves depend on h and g, 
while p plays a significant part only in analysis of forces. Without additional information on the perturbation 
introduced into the system, none of the dimensionless complexes of these quantities can be constructed. 

There are, however, at least two critical velocities [1], c. = ~ and c** = x / ~ ,  in the vicinity 
of which one should expect qualitative changes in the gravity-wave pattern, whatever the method of their 
generation. In particular, c. limits the region of existence of stationary harmonic waves, and c** limits the 
region of existence of cnoidal waves (including solitary ones) [1]. The motion of a side wall is an attractive 
method of wave generation due to the possibility of introducing perturbations, whose velocities are far higher 
than the critical ones. It should also be noted that the problem of shallow-water gravity waves is, in a sense, 
similar to the fundamental problem of gas dynamics on the motion of a piston in a tube [2]. 

The previous experiments dealt mainly with two applied problems. One problem concerns the action 
force of a liquid on a wall [3]. The second one is mainly the problem of a wavemaker, and it can be thought to 
be inverse to the problem with which we deal here - -  to find such a law of the motion of a wall which ensures 
the formation of waves of a specified form. One of the major achievements in this line of research is practical 
realization of the process of wave breaking in a given section of the channel [4]. 

Studies of the theoretical and computational character are based on the potential fluid motion model, 
while in analytical studies the method of small-parameter expansion is used. A small parameter is usually 
either the ratio of water depth to wave length (the shallow water theory) [2], or dimensionless time [5], or 
the ratio between the wave amplitude and length [6]. In recent years, many numerical experiments based on 
the model of potential motion have been performed (see, for example, [7, 8]). It is worth noting the so-called 
discrete incompressible-fluid model [9], which is well adapted to numerical experiments. Valuable information 
on the problems considered below is given in [10]. 

On the whole, modern mathematical  models adequately describe physical processes only in a limited 
range of parameters. Their application becomes particularly difficult in the case of wave breaking at 
supercritical velocities when the energy strongly dissipates, and the fluid becomes two-phase. One has managed 
to 'reproduce only the initial stage of the process of wave breaking in numerical experiments. 

In the present work, several dozen partial solutions of the problem considered are obtained for 
combinations of the parameters that make it possible to describe well the wave motions by modern analytical 
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and numerical methods and also at supercritical perturbation velocities. The  length of the channel in the 
experiments is limited, and when the t ime t is large, the parameter  L plays a significant part. In the case 
of wave breaking, the effect of the viscosity and compressibility of air and water, surface tension, and the 
difference in water and air densities is of great importance. 

The experimental setup is schematically shown in Fig. 1. A plane vertical plate 1 totally blocking the 
channel cross section was set in motion by a carriage 2 driven concurrently by an electric motor and by a 
falling weight 5. Having passed a specified path  S, the carriage was stopped abruptly by a grip 3. This made 
it possible to realize with acceptable accuracy one of the simplest, in number  of parameters, laws of motion: 
constant acceleration within the t ime interval (0, T1], uniform motion with velocity U0 in the interval (T1, T2], 
and an abrupt stop at t = T2. 

Figure 2 shows two examples of the law of motion of a wail. The t ime t is plotted along the abscissa 
from the moment  of start,  and the carriage velocity U is plotted along the ordinate. The experimental points 
are obtained by numerical differentiation of the signal from a rheochord transducer,  which registered the 
motion of the carriage s(t). The curves correspond to the following approximation: 

at for 0 ~< t < T1, 
U = U0 for T1 ~< t < T2, (1) 

0 for t ~ T 2 ,  

where a, TI, Uo = aT1, and T2 are the parameters.  For curve 1, T2 = T1, and the law of motion is characterized 
only by two parameters: a and T1 (or U0) [a = 96 cm/sec 2 and T1 = 0.5 sec (U0 = 48 cm/sec)]. Curve 2 is 
described by three parameters:  a = 196 cm/sec  2, T1 = 0.82 sec, and T2 = 1.32 sec (U0 = 161 cm/sec). 

Because of the elasticity of mechanical systems, it is impossible in the experiment to stop the wall 
instantaneously. Moreover, this is undesirable when gravity waves are studied. Due to the elasticity of the 
grip and other parts, after the stoppage the Carriage moved back a little with a velocity that  is significantly 
less than U0. This is indicated in Fig. 2 by the fact that  the velocity U assumes negative values for t > T2. 
The length of a path that  is covered by the wall in backward motion did not exceed 1% of S. It is assumed 
that  such a deviation from approximation (1) exerted no significant effect on the inertial gravity waves. 

The parameter  B was equal to 20 cm, and the parameters h, a, :/11, T2, and L were varied. Deviations 
of the free surface from equilibrium q were measured by wavemeters 4 (see Fig. 1). Below, we give the results 
of measurements  with fixed wavemeters which registered ~(t) at given values of the longitudinal coordinate x 
(the fixed x axis is shown in Fig. 1). Additional information was obtained by means of wavemeters fastened 
to the carriage along with photographic recording. The perturbat ion velocity c was estimated by signals from 
two wavemeters spaced Ax ~< 30h apart. 

In the experiments,  at tent ion was focused on two fundamental  questions. Can the perturbation 
propagate with a supercritical velocity? If yes, does it remain stable in such a propagation? The instability 
of gravity waves manifests itself as wave breaking. 

In the hydrodynamic problem under consideration, a positive answer to the first question follows from 
the law of conservation of mass and, hence, the perturbation can be realized for practically unlimited values 

811 



i] ~ a 4. 
r/,c J/,cm 

2 

A / ~ A  _ 

ol o'.5 s v %;.o'- 2.~ t.~4 o 

-2 J -2  

Fig. 3 

3:5 4:0 t 4:5 5.~ ~'r 5:5 t, sec 

of c. The gravity field hinders the vertical rise of the fluid displaced by the wall, whereas there is no such 
limitation along the z axis, provided that L --* oo. In all the experiments, the perturbation's leading edge 
overtook the moving wall, irrespective of whether the latter moved with a subcritical or supercritical velocity. 
For a sufficiently large U0, the propagation velocity c was significantly larger than c**. 

Perturbation stability is a more complicated problem. It was studied well enough for c < c**. In 
particular, there are smooth stable singular waves in the range c. < c < c**. Let us present another example 
of a smooth stable wave for which c is larger than c. but smaller than c**. In this example, the wave differs 
from a solitary wave - -  it is nonsteady. In this wave, the effect of dispersion prevails over that of nonlinearity, 
and this determines the wave stability. Another stabilizing factor is water viscosity. 

The wave just described was obtained at h = 4.9 cm and for values of a, T1, and T2 corresponding to 
curve 1 in Fig. 2. Figure 3 shows the wave as a function of t for zl  = 42 cm (a) and x2 = 297 cm (b). The 
arrow shows the moment of arrival of the wave reflected from the fixed side wall for which z3 = L = 336 cm. 

The perturbation in question is unsteady. For this perturbation, the quantity c is defined as the 
velocity of a point of the wave-front slope that departed upward from the equilibrium point by the magnitude 
r/0.5 = r/m/2 (r/m is the height of the first crest). It should be noted that all the other points of the front slope 
in this example moved with a velocity which differed from c by not more than 5%. However, for stability, it 
is important to know exactly which points move faster - -  those at the top or those at the foot of the crest. 
For the perturbation in Fig. 3, the points at the foot moved faster and the wave was stable. 

In Fig. 3a, the wave is strongly nonsymmetric, and c = 83.3 cm/sec = 1.202c. = 0.850c**. The high 
front crest is followed by a train of almost periodically decreasing (in amplitude) waves. The level of the back 
slope of the first crest decreases nonmonotonically. With an increase in x, the perturbation tends to take the 
shape of a solitary wave, but  in the c ~ e  considered it fails. This is due, to a considerable extent, to the water 
viscosity which violates the balance between the nonlinearity and dispersion effects. As a result, the wave 
remains unsteady up to complete degeneration. 

For x2 = 60.6h (Fig. 3b), the fixed wavemeter registers a pair of high crests. The first is a leading 
wave which propagates in the fluid at rest, and the second is a reflected wave which propagates in a slightly 
perturbed fluid. The properties of the leading wave are close to those of the solitary wave. For the direct wave, 
c = 88.2 c m / s e c =  1.272c. = 0.900c**, i.e., slightly larger than in the case of Fig. 3a. This means that after 
the wall had stopped, the wave continued to gain speed and then began to decelerate because of dispersion 
and viscosity. Subsequently, i.e., after the moments indicated in Fig. 3b, the value of c slowly decreased. The 
value of c = c. was reached when the path was approximately equal to 500h, the wave having reflected 6 times 
from the fixed vertical walls. Reflections did not affect the stability, and the wave height and propagation 
qelocity changed insignificantly. 

There is no arguing that mathematical models based on the Navier-Stokes equations can describe 
this example with better  accuracy and in more detail than can be done in experiments. To test simpler 
mathematical models and numerical methods, we give in Tables 1 and 2 the experimental values of 7/(Table 1 
corresponds to Fig. 3a, and Table 2 to Fig. 3b). 

For c > c**, the perturbations were unstable, and their front slope broke. If c was not much larger than 
c**, breaking did not occur immediately. We had an example in which the uns teadywave  remained smooth up 
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T A B L E  1 

t, sec 7], cm 

0.40 0 
0.42 0 

0.50 0.05 
0.60 0.30 
0.65 0.77 
0.72 2.17 
0.76 3.12 
0.77 3.22 
0.78 3.24 
0.79 3.17 
0.83 2.98 
0.86 1.76 
0.91 1.45 
0.95 1.17 
1.00 0.81 
1.10 -0 .21 
1.20 -0 .62  

t~ sec 

1.30 
1.40 
1.46 
1.50 
1.60 
1.65 
1.70 
1.77 
1.80 
1.85 
1.90 
1.95 
2.00 
2.50 
3.00 
7.40 
7.43 

7]~ cn l  

-0 .40 
0.02 
0.47 
0.32 

-0.38 
-0 .38 
-0.12 

0.31 
0.26 

-0 .07 
-0.29 
-0.12 

0.09 
0.09 

-0.12 
0 
0 

t~ SeE 

7.50 
7.60 
7.71 
7.77 
7.81 
7.90 
8.00 
8.10 
8.20 
8.30 
8.40 
8.51 
8.55 
8.61 
8.70 
8.80 
8.90 

r], c m  

0.06 
0.40 

1.85 
2.27 

1.86 

0.58 
0.14 

0.10 
0.11 

0.27 
0.72 

1.76 

1.90 
1.64 

0.64 
0.02 

-0.24 

t, seq 

8.93 
9.0{] 
9.10 
9.2{] 
9.3{] 
9.4{] 
9.5{] 
9.6{] 
9.7{] 
9.8{] 
9.9{] 

10.00 
10.10 
10.20 
10.30 
10.40 
10.50 

~ c m  

-0 .25 
-0 .15  

0.15 
0.37 
0.43 
0.35 
0.16 
0.04 

-0 .04  
-0.01 

0.05 
0.20 
0.17 
0.10 
0 

-0 .02  
-0 .11 

Fig. 4 

to a distance of as much  as 50h f rom the  moving wall. Upon intense pe r tu rba t ion ,  breaking occurred directly 
near  the moving wall. T h e r e  were cases where breaking occurred not  only at the  front  slope of the wave but  

also at the back one. 

Figure 4 shows a p h o t o g r a p h  of the  pe r tu rba t ion  for h = 1 cm and L = 392 cm, with the values of a, 

Ts, and T2 corresponding to  curve  2 in Fig. 2. The  exposure  t ime ranged f rom 1/500 sec to approximate ly  
0.1 sec after  the  wall had  s topped.  The  wave propagated  f rom left to right.  It  is no tewor thy  tha t  there  is a 

breaker  and a pi t  on the  wave crest ,  while the  back slope of the  wave is unstable.  
Fur ther  evolut ion of this p e r t u r b a t i o n  is i l lustrated by Fig. 5, which shows the  funct ion ~(t) for a fixed 

difference x - S = 75 cm (S  = 146.5 cm) and where 1 is the leading wave propaga t ing  in the fluid at rest 

for cl = 161.3 cm/sec  = 5.15c. = 3.63c** and 2-5 are reflected waves ( the odd numbers  designate the waves 
moving in the  posi t ive d i rec t ion  x and the even numbers  refer to the  waves moving in the negative direction).  

For wave 2, c2 = 62.5 cm/ sec  and  the  water  dep th  ahead of its front is almost  zero. In this case, the concepts of 

c, and c** lose their  significance, and the typical  velocity can be de te rmined  as c*** = 2v/2v/2v/2v/2v/2v/2~ (H  is the water 
depth  behind the wave). It t u rned  out  tha t  c2 ~ c***. Waves 3-5 p ropaga ted  with almost equal velocities 

(c3 = 34.1, c4 = 36.6, and c5 = 32.6 cm/sec) .  Th e  water  dep th  before their  fronts was not constant ,  and their 
critical velocities are inde te rmina te .  

Figure 5b -d  shows waves 1, 2, and 5 on a larger scale. Waves 1-3 were unstable  and broke. Wave 4 
and all subsequent  waves were s table  and smooth.  Wave 5 is similar in shape to the so-called undular  wave. 
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TABLE 2 

t, sec ~7, cm 

3.22 0 
3.32 0.01 
3.42 0.08 
3.50 0.23 
3.55 0.55 
3.61 1.26 
3.64 2.00 
3.67 2.54 
3.72 2.00 
3.76 1.30 
3.80 0.74 
3.85 0.37 
3.90 0.19 
3.95 0.14 
4.00 0.12 
4.10 0.12 
4.20 0.22 

t, see 

4.23 
4.30 
4.35 
4.40 
4.50 
4.56 
4.61 
4.65 
4.69 

4 . 7 4  
4.81 

4 . 8 5  
~4.90 
14.95 

5.00 
5.10 
5.15 

r / ,  c m  

0.23 
0.20 
0.22 
0.33 
0.64 
1.00 
1.66 
2.12 
2.32 
2.00 
1.12 
0.62 
0.30 
0.07 

-0.11 
-0.37 
-0.41 

t, sec 

5.20 
5.30 
5.40 
5.50 
5.53 
5.60 
5.70 
5.80 
5.90 
6 .00  

6.08 
6.17 
6.26 
6.36 
6.44 
6.55 
6.65 

T], cIn 

-0.31 
0.02 
0.15 
O.lO 
0.I0 
0.26 
0.48 
0.29 
0.14 
0 

-0.10 
0 
0.05 
0 

-0.11 
-0.30 
-0.20 

t, s e c  

6.75 
6.86 
6.95 
7.05 
7.13 
7.20 
7.30 
7.40 
7.50 
7.60 
7.72 
7.80 
7.93 
8.00 
8.10 
8.15 
8.27 

t7, c m  

0.06 
0.23 
0.12 

-0.05 
-0.10 
-0.06 

0.01 
0 
0 
0.09 
0.19 
0.06 

-0.20 
-0.12 

0.20 
0.28 
0 
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Owing to intense energy dissipation, the height and propagation velocity of unstable waves decrease 
with time much faster than those of stable waves. Figure 6 shows the curves of the dimensionless height 
q o  = rim~ h and dimensionless velocity c ~ = c z / v ~  of wave 1 versus :c o = (x  - S ) / h .  The velocity c o 
decreases monotonically. The height r/~ diminishes abruptly in the vicinity of x ~ = 42, remains practically 
constant up to x ~ ~ 140, and only then decreases monotonically. A reference to Fig. 4 will help us to explain 
such behavior of the wave. In the vicinity of x ~ = 42, the breaker at the crest disappears, while for x ~ < 140, 
a wave that decreases the level reaches a wave that increases the level, and the water depth between the two 
remains unchanged. 

On the whole, the experiments have shown that with the above law of motion of the wall, the 
perturbations introduced by the wall are unstable if c > c**. For such perturbations, the stability can be 
preserved only in a limited time interval due to the nonsteadiness. To realize long-living stable perturbations 
with c > c**, if such exist at all, one needs to employ a different method of introducing perturbations. 

An analysis [2] of the problem of dam breaking within the framework of a first approximation of 
the shallow-water theory yielded a smooth solution for the wave over a dry bottom with the leading-edge 
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propagation velocity equal to 2v/-~.  In the above experiments, wave 2 in Fig. 5 propagated over a dry 
bottom with the smaller velocity ~ and was unstable. 

We express our gratitude to N. I. Makarenko for useful discussions of the work. In particular, he 
noted that the numerical results based on the exact model of the potential fluid motion yield for the 
second critical velocity the value 1.29x/~, which is somewhat smaller than the value V / ~  obtained in 
a second approximation of the shallow water theory. He also noted that for the unsteady wave in Fig. 3, 
c -~ 1.04k/g(h + qm/2). This value differs little from the local perturbation velocity and agrees with the 
known solution of the gas-dynamic problem on the accelerated motion of a piston, 

This work was supported by the Russian Foundation for Fundamental Research (Grant 95-01-01164a). 

R E F E R E N C E S  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, et al., Nonlinear Problems of the Theory oj 
Surface and Internal Waves [in Russian], Nauka, Novosibirsk (1985). 
J. J. Stoker, Water Waves. Mathematical Theory and Applications, Interscience Publishers, New York 
(1957). 
E. S. Chan and W. K. Melville, "Deep-water plunging wave pressure on a vertical plane wall," Proc. 
R. Soc. London, A417, No. 1852, 95-131 (1988). 
D. G. Dommermuth, D. K. P. Yue, E. S. Chan, and W. K. Melville, "Deep-water plunging breakers: 
a comparison between potential theory and experiments," J. Fluid Mech., 189, 423-442 (1988). 
A. T. Chwang, "Nonlinear hydrodynamic pressure on an accelerating plate," Phys. Fluids, 26, No. 2, 
383-387 (1983). 
S. W. Joo, W. W. Schultz, and A. F. Messiter, "An analysis of the initial value wavemaker problem," 
J. Fluid. Mech., 214, 161-183 (1990). 
W. W. Schultz, S. E. Ramberg, and O. M. Griffin, "Steep and breaking deep-water waves," in: Proc. of 
16th Symp. Naval Hydrodynamics, Berkeley (1986). 
M. Miyata, C. Matusukawa, and H. Kajitani, "Shallow water flow with separation and breaking wave," 
J. Soc. Naval Architects Jpn., 158 (1985). 
A. M. Frank, "Discrete nonlinear-dispersion shallow-water model," Prikl. Mekh. Tekh. Fiz., 35, No. 1, 
34-42 (1994). 
M. S. Longuett-Higgins, "Breaking waves in deep or shallow water," in: Proc. of 10th Syrup. on Naval 
Hydrodynamics, Cambridge (1974), pp. 597-605. 

815 


